full edge-friendly index sets of complete bipartite graphs

نویسندگان

wai chee shiu

hong kong baptist university

چکیده

‎‎let $g=(v,e)$ be a simple graph‎. ‎an edge labeling $f:eto {0,1}$ induces a vertex labeling $f^+:vtoz_2$ defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$‎, ‎where $z_2={0,1}$ is the additive group of order 2‎. ‎for $iin{0,1}$‎, ‎let‎ ‎$e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$‎. ‎a labeling $f$ is called edge-friendly if‎ ‎$|e_f(1)-e_f(0)|le 1$‎. ‎$i_f(g)=v_f(1)-v_f(0)$ is called the edge-friendly index of $g$ under an edge-friendly labeling $f$‎. ‎the full edge-friendly index set of a graph $g$ is the set of all possible edge-friendly indices of $g$‎. ‎full edge-friendly index sets of complete bipartite graphs will be determined‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full Edge-friendly Index Sets of Complete Bipartite Graphs

Let G = (V,E) be a simple graph. An edge labeling f : E → {0, 1} induces a vertex labeling f : V → Z2 defined by f(v) ≡ ∑ uv∈E f(uv) (mod 2) for each v ∈ V , where Z2 = {0, 1} is the additive group of order 2. For i ∈ {0, 1}, let ef (i) = |f−1(i)| and vf (i) = |(f+)−1(i)|. A labeling f is called edge-friendly if |ef (1) − ef (0)| ≤ 1. If (G) = vf (1) − vf (0) is called the edge-friendly index o...

متن کامل

extreme edge-friendly indices of complete bipartite graphs

let g=(v,e) be a simple graph. an edge labeling f:e to {0,1} induces a vertex labeling f^+:v to z_2 defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where z_2={0,1} is the additive group of order 2. for $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. a labeling f is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. i_f(g)=v_f(1)-v_f(0) is called the edge-f...

متن کامل

Full friendly index sets of cylinder graphs

Let G = (V,E) be a connected simple graph. A labeling f : V → Z2 induces an edge labeling f : E → Z2 defined by f(xy) = f(x) + f(y) for each xy ∈ E. For i ∈ Z2, let vf (i) = |f−1(i)| and ef(i) = |(f+)−1(i)|. A labeling f is called friendly if |vf (1) − vf(0)| ≤ 1. For a friendly labeling f of a graph G, we define the friendly index of G under f by if(G) = ef (1) − ef(0). The set {if(G) | f is a...

متن کامل

Full Friendly Index Sets of Slender and Flat Cylinder Graphs

Let G = (V, E) be a connected simple graph. A labeling f : V → Z2 induces an edge labeling f∗ : E → Z2 defined by f∗(xy) = f(x) + f(y) for each xy ∈ E. For i ∈ Z2, let vf (i) = |f−1(i)| and ef (i) = |f∗−1(i)|. A labeling f is called friendly if |vf (1)− vf (0)| ≤ 1. The full friendly index set of G consists all possible differences between the number of edges labeled by 1 and the number of edge...

متن کامل

Full friendly index sets of P2×Pn

LetG=(V ,E) be a graph, a vertex labeling f : V → Z2 induces an edge labeling f ∗ : E → Z2 defined by f ∗(xy)=f (x)+f (y) for each xy ∈ E. For each i ∈ Z2, define vf (i)=|f−1(i)| and ef (i)=|f ∗−1(i)|. We call f friendly if |vf (1)− vf (0)| 1. The full friendly index set of G is the set of all possible values of ef (1)− ef (0), where f is friendly. In this note, we study the full friendly index...

متن کامل

Edge-disjoint spanners of complete bipartite graphs

A spanning subgraph S=(V; E′) of a connected simple graph G=(V; E) is an (x+c)-spanner if for any pair of vertices u and v; dS(u; v)6dG(u; v)+c where dG and dS are the usual distance functions in graphs G and S, respectively. The parameter c is called the delay of the spanner. We investigate the number of edge-disjoint spanners of a given delay that can exist in complete bipartite graphs. We de...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
transactions on combinatorics

جلد ۶، شماره ۲، صفحات ۷-۱۷

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023